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Abstract

Abstract: This paper summarizes the past eight years of research in the application of Artificial
Intelligence to Simulation. Our focus has been in two areas: the use of Al knowledge representation
techniques for the modeling of complex systems, and the codification of simuiation expertise so that it can
be used to manage the simulation life cycle. The KBS system is an embodiment of this research. It
provides a complete Simulation Decision Support Environment for the modeling, validation, simulation
and analysis of complex systems. KBS has been applied to a variety of problems including factory and
distribution system analysis.
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1. Introduction
Industry has been slow in adopting simulation as a means for analyzing complex decision problems.

One reason is that the complexity of the modeling language, and differences between simulation
modeling concepts and the system to be modeled make model building a difficult and time consuming
task. Early work in Knowledge Based Simulation [Klahr & Fought 80, McArthur & Sowizral 81, Reddy &
Fox 82a, Reddy et al. 86] has attempted to remove this problem by using Artificial Intelligence (Al)
knowledge representation techniques, such as frames, to represent the objects and their relationships,
and rules, to represent the procedural behaviors of the objects’, to create simulation models which are:

o explicit,

¢ understandable,

» modifiable, and

o self-explanatory.
By using a frame language to represent domain concepts, such as object structure, and goals, there is a
one to one correspondence between the domain and the simulation model2. Secondly, by using rules to
represent object behavior, the specification and modification of the behaviors become easier. Lastly,
expianation techniques developed around rule based sxzstqnxs ‘provide the basis for explaining event
behaviors. { [1€e  cycle mananlament 351 - :

While the Al approach has reduced the difficuity of model building, somewhat, more widespread use of
simulation technology will not be achieved until the time it takes to perforrn the activities in the simulation
life cycle:

 Problem formulation

« Modeling building

« Data acquisition

+ Model fransiation

¢ Verification

e Validation

» Experiment planning

¢ Experimentation, and

¢ Analysis of results
is reduced, while at the same time the quality of the resuits are enhanced. The barrier to achieving these
goals is the lack of available expertise both in simulation theories and techniques and the domain of
application. This lack of expertise results in:

» inaccurate and incomplete modeis

¢ poor experiment designs

e poor analysis

« few ideas of how to alter the model to maximize the simulation goals
The representation and utilization of expertise has been one of the more important contributions of Al.
Consequently, Al knowledge engineering tools, such as Knowledge CraftR [Knowledge Craft 85), provide
an excellent environment for constructing a Knowledge Based Simulation Tool for supporting and
managing the simulation life cycle and applying expertise at each stage of the cycle.

'Confusion exists around the use of a knowledge engineering tool to perform simulation and the use of knowledge representation.
In the former, the powerful graphic facilities provided by the tool and the underlying workstation provide a rich and powertul interface
which does not necessarily have any Al content.

2There is another confusion between the concepts of objects such as in Simula/Object Oriented Programming and knowledge
representation. Knowledge representation, in addition to being able to represent objects and their procedural behavior [Rychener
82, Knowledge Craft 85], focuses on the relations among objects and the deductions supported by them [fox79]. Even more so,
knowledge representation research is directed towards the developement of a clear, concise and consistent semantics for the
representation of knowledge. Consequently, standard representations have been developed for a number of domains such as
factory scheduling [fox86) and project management [sathig6),

o~
’
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In this chapter, we describe the knowledge based simulation system KBS. KBS has been a testbed for
exploring the concept of Al in Simulation. Since 1980, we have been exploring issues such as:

» Using an object oriented approach to model representation where objects have a one to one
correspondence with domain objects, and the objects have methods which define their
behavior. This provides flexibility in creating and aitering entities and their behavior, without
altering the sirulation model interpreter [Fox & Reddy 82].

¢ Extending the object oriented representation with concepts from semantic networks in order
to provide a standard semantics for representing entities and their relationships [sathi85].

e Representing an object's behavior (i.e., events) in the form of rules which are easily
understood by the user [Rychener 82].

o Combining menus and graphics to provide interactive model building.
« Verifying models by using logic programming to specifying verification axioms.

¢ Providing the capability to reduce a model's complexity through the use of abstraction
mechanisms so that a model can be represented at multiple levels of abstraction. The user
specifies the level of simulation and the system automatically configures the model
[McRoberts, Fox & Husain 85).

¢ Focusing the gathering and analysis of simulation data according to goals specified by the
user [Reddy, Fox & Husain 85, Venkataseshan & Reddy 84].

« Enhancing the user's understanding of a model's dynamic behavior by providing a variety of
simulation monitoring facilities including: stepping, tracing, the dispiay of inter-event and
.intra-event communications, and interrupts and checkpoints to suspend a simulation run to
investigate entities or take checkpoints so as to expiore the effect of alternate decisions while

preserving the option of restoring the system to any one of the several checkpointed model
states.

¢ Rating simulation results according to the goals provided by the user.

= Heuristic (i.e., rule-based) analysis of simulation data and the specification of repairs to the
model in order to better satisfy the predefined goals.

o Automatic rule refinement using causal path analysis to determine the degree to which
variation of a given effect is determined by each particular cause in the model, achieved by
combining the qualitative knowledge regarding causal relations with the quantitative
knowledge furnished by correlation and regression.

» Managing the simulation life cycle by means of a goal directed rule system which examines
the performance of a scenario with the help of diagnosis/repair rules which can suggest
model modifications that may realize a simulation goal, thereby transforming simulations from
being descriptive systems to prescriptive systems.

Section 2 describes the distribution domain which will be used as the primary example throughout the
article. Section 3 describes the KBS methodologies for representing, creating and verifying models.
Section 4 describes goal acquisition, model instrumentation, simulation execution and data gathering.
Section 5 describes how KBS leams rule refinements from simulation data. Section 6 describes the
overall goal directed architecture of KBS. Lastly, we conclude in section 7.

2. Corporate Distribution Domain

In a large manufacturing organization the corporate distribution system plays an important role in
assuring adequate market penetration and retention for its products. This is accomplished by keeping
transportation and warehousing costs low,and facilitating an aggressive pricing policy. In addition, it
should provide a good level of service to its customers and resellers by providing products on time while
not requiring a high level of customer inventory. In order to achieve this the corporate distribution system
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should simultaneously deal with a number of mutually conflicting policies. For example, if a reseller is
required to carry a high inventory level to minimize stockouts it will reduce the cost of transportation but
will exact a penaity on the reseller’s ability to be competitive which may result in loss of market share for
the corporation. In order to deal with issues such as this a corporate distribution system needs a tool to
aid in decision making. Even though many analytical techniques for dealing with multi-echelon inventory
systems do exist, we chose a simulation approach so that we can effectively incorporate many
idiosyncratic policies that are normally part of complex distribution management systems. The following
provides a more detailed description of the distribution system.

A manufacturer produces a number of products which consist of a large number of components and
subassemblies some of which are produced by the manufacturer at widely distributed locations while
others are purchased from vendors located worldwide. These components and subassemblies are
transported to a number of distribution centers where they are stocked. Each distribution center serves
customers located in its assigned area. The customer may be a reseller or special customer who can
deal with the distribution center or the corporate business unit directly. Customer requests are processed
by the business unit or the distribution center which results in shipment of products or components to be
. merged at the customer site. The distribution centers in turn depend on manufacturing centers and
vendors to supply components and products to replenish their stock. This problem is further complicated
by factors such as seasonal demands, varying lead times to build or expand manufacturing facilities, need
to maintain uniform production levels, contractual agreements with vendors, effects of weather and labor
problems on transportation schedules and myriad other problems. It can be easily seen that the corporate
distribution problem puts tremendous demands on managers at all levels who are faced with decision
making which has far reaching effects on the entire corporation.

Consider some of the decisions faced by managers at various levels in the Corporate Distribution
System (CDS). The primary objectives of simulating a CDS is to be able answer questions similar to
those listed below.

o Where should we locate manutacturing plants for various components and what should their

capacities be?

e For a given forecasted demand and its geographic distribution where should we locate
distribution centers and what should their capacities be?

« Should the products be merged at distribution centers or at customer sites?

o What is the effect of transportation modes and schedules on customer stockouts and
satistaction?

o What is the overall effect of a delay in vendor shipment of some key components?

+ Do we have enough manufacturing and distribution capacity to meet an anticipated increase
in demand for products?

« What is the effect of consolidation of manufacturing and distribution facilities?
e What is the effect of a proposed order handling procedure on the corporation?

This list illustrates the enormous complexity of the distribution domain and suggests the need for tools
to aid in decision making at a number of levels. For example, low inventories can economize inventory
carrying costs but lost sales resulting from frequent stockouts can reduce total profits. Because of this, the
tool must inherently be able to deal with conflicting goals. The KBS approach to simulation will make it
possible to deal with such issues.

A simplified model of a Corporate Distribution network is shown in Figure 2-1. (See [Reddy et al. 83] for
the eariier work upon which this model is derived.)
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Figure 2-1: Example of a Simplified CDS Model

3. Model Building

The acquisition, representation and verification of simulation models probably consumes the majority of
the time spent in the simulation fife cycle. The following describes how we have applied Al to increase the
quality of models and decrease the time it takes to build them.

3.1. Model Representation

It is our belief that the greater the cognitive distance between an expert's description of a system and
the descriptions directly supported by a simulation language, the greater the difficulty there is in
constructing the simulation model. Consequently, we have strived in KBS to support the construction of
models which closely match the way the expert views the system.

The approach taken in KBS to represent models is based on Al knowledge representation techniques
[Reddy & Fox 82a, Fox & Reddy 82, Reddy & Fox 82b, Reddy & Fox 83]. The representation is a frame
based semantic network, which supports the representation of objects, their attributes, structure and
procedural behaviors, relations among objects, goals, and constraints. Models are constructed by first
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building a set of prototypical objects which are standard within a particular domain. In the case of
distribution management, some standard objects are resellers, distribution centers, and manufacturing
sites. A specific model is built by instantiating these prototypes and connecting them via relations.

Objects in KBS are represented as schemata®. A schema is represented as in Figure 3-1, with
opening double braces followed by a schema name (printed in bold font) and a set of slot-value pairs,and
finally terminated by closing double braces.

The pittsburgh-reseller schema defines a retail sales store containing two stock tems a and b. It also
defines who the manager is, its sales region, and its address.

{{ pittsburgh-reselier
INSTANCE: Reseller

* STOCK: stock-a stock-b

| range: (type instance stock)

REGION: Allegheny

MANAGER: Ramana Reddy

ADDRESS: 123 Easy St.

REORDER-PROCEDURE: Reorder-rule-1

Figure 3-1: Example of a Reseller schema

In addition to values, each slot may have a set of associated facets or meta-information (printed in
italics). The Range tacet restricts the type of values that may fill the slot. The Default facet defines the
value of the slot if it is not present. The range facet restricts the types of values taken on by a slot.

The stock-a schema defines the status of the in stock part a and what has been ordered due to the

art falling below its reorder point.
) {{ stock-a
N INSTANCE: stock
2 PART: a y
ON-HAND: 138
ON-ORDER: {{ INSTANCE: stock-order
5 PART: a '
AMOUNT: 200 .
3 SOURCE: pittsburgh
;- DATE-ORDEREC: 1 aug 87
\ DATE-DUE: 15 aug 87 }}
5 MIN-STOCK: 200
RE-ORDER-AMOUNT: 500 }}

, An important aspect of CRL is that schemata may form networks. Each slot in a schema may ac* as a
P relation tying the schema to others. The schema may inherit siots and their values along these relations.

‘ For exampie, pittsburgh-reselier is related to reseller by the INSTANCE relation. It inherits its standard
! slots from reseller, but their values are defined locally.

4y The procedural behaviors of an object, such as the reorder procedures for pittsburgh-reseller, are
{' defined by a slot which names the procedure, and by the values of the slots which define the actual

Y 3Eariy versions of KBS were built on top of SRL [Wright & Fox 83], a knowledge engineering tool, subsequent versions have been
8 implemented in Knowledge Craft's representation language CRL [Knowledge Cralft 85].
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behavior. Values can be lisp procedures or rules. A rule provides a means of specifying procedural
knowledge which is easier to comprehend by the model builder. For example, the REORDER-PROCEDURE
for the Pittsburgh-Reseller has its behavior defined by the following rule:

{{ Reorder-rule-1
INSTANCE: rule
IF: (less-than stock.on-hand stock.min-on-hand)
THEN: (send-message 1o stock.source
:message reorder
part stock.part
:amount stock.reorder-amount)
(create-reorder-record stock) }}

The rules reorders a part when the on-hand stock is below the reorder point by sending a message to
the object which is the source of the part for the reseller.

Knowledge Craft provides the model builder with a graphical interface for defining new schemata and
slots (figure 3-2), and to define the inheritance semantics of slots which act as relations. This includes
defining what information (slots and their values) is inherited, not inherited, and altered when inherited.
This feature will be useful in establishing special relationships between modelling entities that deai with
restricted access to information and automatic elaboration of requested information. For a comprehensive
treatment of this concept consult [Knowledge Craft 85].

3.2. Model Acquisition

Two philosophies exist for the acqusition of simulation models: a domain independent view where the
interface utilizes simulation concepts as the constructs to be described, versus a domain dependent view
where domain specific concepts are the constructs to be described. Experience has shown [Kahn
87] that domain specific knowledge acquisition systems provide a powerful means of acquiring models.

The philosophy taken in our work on knowiedge based simulation has been to develop a set of domain
specific interfaces. With the availability of powerful knowledge engineering tools on workstations with
good graphic displays, the door has been opened for the development of rich interfaces. For example, a
descendent of the our KBS work at CMU is the Simulation Craft system developed at Carnegie Group
[Fox et al. 86). In figure 3-3 there is an example of a multiwindow interface which contains a window for
process planning and another for facility layout.

3.3. Consistency and Completeness

A recurring problem in simulation systems, including KBS, is maintaining model consistency and
completeness. We found that much time is wasted discovering errors and holes in the model. To deal
with this problem, we use the logic- programming facility of Knowledge Craft to specify completeness and
consistency rules.

A consistency constraint relating resellers and distribution-centers may be specified as:

(for-all ' resallar ' (VIEWED-AS instance resellar)
' (there-exists ’'dc ' (VIEWED-~AS instance distribution-center)
’ (and (reseller.SUPPLIED-BY = dc)
(dc.SUPPLIES = reseller))))

This constraint may be interpreted as: for all resellers ‘there should exist schemata of the type
distribution-center such that the schemata have consistent values for the slots SUPPLIED-BY and
SUPPLIES.
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Figure 3-2: The Knowledge Craft Representation Building Interface .}
a
For each constraint, KBS evaluates it and reports whether it was satisfied or whether it failed. In case '
of a constraint failure the interpreter provides a trace facility to determine the source of failure. "

3.4. Model Reduction

The model we developed of a corporate distribution system was large in terms of the number of
facilities, and complex in terms of decision processes and levels of detail. In working with the distribution
analysts, we found that the entire model was not necessary to answer every question. Instead, a
question required a version of the model which is reduced in either breadth or depth. In particular, when
focusing on a particular region’s distribution logic, only abstractions of other regions were required.
Consequently, it was necessary to introduce a mechanism for abstracting selective portions of the model.
These alterations can be performed automatically provided the model builder has created a knowledge
framework for the task. These simplifications result in faster running models, increased model
understanding, and simplified analysis.
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Model simpilification techniques fall into two main categories, static and dynamic. In static techniques S
both model structure and model parameters are altered; however, the event behaviors remain -
unchanged. Since only static aspects of the model are -affected these are called static techniques. -
Dynamic techniques on the other hand alter a model’s dynamic processes. This means redefining some '
of the event behaviors. ; "
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Figure 3-3: Process plan and facility layout interface '
\
3.4.1. Static Abstraction
There are two types of static abstraction, equivalent node aggregation and data class aggregation. A
Equivalent node aggregation combines several nodes into a single node of the same type. This new -
node must be in some sense the sum of the original nodes. This will result in information that is unique to 3
the individual nodes being lost but if the new node’s parameters are adjusted correctly then the new node
-will be functionally similar to the old group. In this manner the rest of the model is not affected. For ]
example, in Figure 3-4 individual resellers in a region may be grouped together to form a regional reseller. .,
The conesponding schema that describe this kind of aggregation is shown in Figure 3-5. !
{{ equivalent-node-aggregation ;
IS-A: model-abstraction
TYPE: reseller
comment: type of node to aggregate
SUPER-NODE: regional-reseller !
comment. single node replaces sub-nodes when abstracted i
¥ SUB-NODES: reseller1 reseller2 resellerd ~
| comment. set of nodes present at detail level .
| AVERAGE-SLOTS: lost-sale-percentage K
comment. aggregate slots filled by averaging
UNION-SLOTS: (order-weeks aggregate-weekly-demand) M
(inventory aggregate-inventory) )
< (operating-days) .
. comment. aggregate slots filled by summation i
SELECT: (select-node-aggregation) i
DESELECT: (deselect-node-aggregation)  }}
Figure 3-5: Example of Equivalent Node Aggregation %
!
"
"

R A LIAA TN : L2 : 1 . | o N W W WL W 8
O R O S O O D X ORI X O DA O A MO S MO O MO M0, o O T i 0 e T, NN



Detailed

Abstract

Figure 3-4: Equivalent Node Aggregation

In data class aggregation objects are grouped into classes and all references to the members are
replaced by references to the class. This of course throws away information about variations among the
class members but it should increase the overall efficiency and not greatly affect model execution.

An example of this concept as applied to the distribution model would be to group all items sold into
classes. For instance in the computer business different types of personal computers may be ¢ ouped
together into a broad class referred to as PC. 1his would greatly reduce the amount of data needed to
track inventory levels for each separate type of personal computer in the model.

3.4.2. Dynamic Abstraction

Dynamic abstraction attempts to simplify simulation models by analyzing the stimulus-response event
behavior of one or more nodes, and to construct a single node with a stimulus-response behavior which is
statistically similar. This technique can be used to combine nodes of the same or different classes. The
collection of statistics on event behavior can be achieved by either constructing stimulus response
frames, or by post-processing information gleaned from model introspection. However purely statistical
information on events is difficult to use because event parameters cannot readily be asbtracted, and in
such cases the abstracted model may become inconsistent. A full treatment of abstraction techniques as
used in KBS is provided in [McRoberts, Fox & Husain 85].

4. Model Simulation

in KBS, simulation is viewed as being composed of a sequence of experiments, where each
experiment measures how well a scenario (i.e., an aitered version of the original model) optimizes one or
more goals. The process of simulation begins first with the specification of a set of goals which result in
the instrumentation of a scenario in order to gather data. The scenario is then executed interactively with
an animated display. The scenario is then rated as to how well it has optimized the goals. The rest of
this section provides a detailed description of the process.
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4.1. Goal Specification and Instrumentation

The primary purpose for constructing a simulation is to verify a hypothesis or optimize one or more
features of a system. Optimization can occur if we are able to measure the performance of a scenario.
We introduce the concept of rating a scenario as a method of measuring the goodness or badness of
simulation results. For example, if the goal is to utilize machines to their maximum (100%), and it in a
given simulation the average utilization of machines is 90% and when confronted with the question "have
we reached the goal 7", we would like to give a better answer than no. To rate scenarios more smoothly
we chose a continuous scale of rating from -1 to +1, -1 meaning the results are far from the goal and +1
to indicate the goal has been completely satisfied. Since goals are often complex and may be composed
of contlicting sub-goals, we therefore describe here an approach to specification of goals of a simulation
as a composite of a set of constraints* on the performance of various entities of the system being
modeled.

Following are the steps involved in the construction and evaluation of goals.
¢ Represent each organizational goal as composed of a set of constraints.

« Select and attach instruments to gather data.
o Specify procedures for computing the performance measures from the raw data collected.
» Execute the simulation for the given scenario.

« Evaluate each constraint by computing a coefficient of constraint satisfaction, which may be
positive to indicate reaching the desired goal, or negative, indicating falling short of the
desired goal.

¢ Evaluate the scenario by computing a coefficient of goal satisfaction as a weighted average
of constraint satistaction coefficients.

4.1.1. Goal Representation
A goal is an aggregation of subgoals which we call constraints. A goal is evaluated as a weighted sum

of the individual subgoal constraint satisfaction coefficients. Figure 4-1 shows an example goal which
when evaluated yields a RATING which is a measure of the desirability of the given scenario. This rating is
derived by combining the ratings of individual CONTRIBUTING-CONSTRAINTS of the goal:

o order-fill-rate

* inventory-tumns

+ inventory-investment

e order-cycle-time

o distribution-cost
Other slots in the goal schema specify the procedure for evaluation and display of the results. Figure 4-2
shows the representation of a constraint. The slot CONSTRAINED-BY of the constraint schema contains the
details of the instrumentation needed to evaluate a constraint.

“Constraints are an inherent part of all organizational models. For a detailed treatment of contraints refer to Fox {Fox 83).
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{{inet-pc-goal1 I
INSTANCE: KBS-goal !
RATING: 0.35 ’
comment. a goodness or badness indicator s
CONTRIBUTING-CONSTRAINTS: order-fill-rate inventory-tums it
inventory-investment order-cycle-time distribution-cost "
comment. the individual goal constraints 5'_
STATUS: inactive TR
comment. whether active or inactive
GRAPH: goal-report-kiviat "
comment. a kiviat graph displays rating ’ :',.
EVALUATION-SCHEDULE: every-quarter o
comment: governs when to evaluate goal .;.
GOAL-SCHEDULER: scheduler X
comment. interprets evaluation schedule - N
EVAL-FN: gval-KBS-goal 0
comment. goal evaluation function :
REPORT-FN: display-evaluated-goal "
comment:. function to display goal state }} s.'
U
¥
Figure 4-1: Composite Goal Schema .
»
&
{{ order-fill-rate e
INSTANCE:  goal-constraint )
CONSTRAINED-BY: order-fill-rate-spec L
comment. specificatian for constraint ey
CONTEXT: order-fill-rate-precondition ~
comment. decides if constraint applies e
IMPORTANCE: 0.25 4
comment. relative importance of constraint )
RATING: 0.8 ]
comment. a goodness or badness indicator ;
VALUE: 40000 )
comment:. unrated raw value of constraint }} \'5
Figure 4-2: Constraint Schema b
()
)
'ﬂ‘
{{ order-fill-rate-spec )
INSTANCE: goal-constraint-spec %,
APPLY: interpolate-finear-graph -
CONSTRAINT-SPEC-OF: order-fill-rate ‘
UTILITY-GRAPH: (100 -1.0) (10000 0.0) (60000 1.0) U
INSTRUMENTS: measure-orders-filled }} b
Figure 4-3: Constraint Schema b '
J
&
4.1.2. Instrutrents _ 0y
The task of data collection is concemed with recording the changes in the value of a parameter. This !
can be accomplished by constantly monitoring the parameter and recording every change or by sampling. E"

The former yields greater accuracy albeit with greater computational overhead whereas the latter
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approach may be satisfactory in many cases and thus the selection of the data collection method is
subjective. In the KBS environment the monitoring is accomplished by attaching demons to slots
whereas sampling is done by scheduling data collection events or as a separate action during the
execution of regular events. Since the data collection in KBS is analogous to physical measurements
(using measuring instruments) the notion of an Instrument (figure 4-4) is introduced.

An instrument in KBS may be viewed as a probe attached to a schema representing an entity in the
model and collects specified data whenever that schema is acted upon in some way. For example, if we
are interested in studying inventory levels we may attach an inventory measurement instrument which is
activated whenever inventory levels change (figure 4-5). Whenever the instrument is activated it may
simply record the value of the simulation clock and the inventory level. This information is stored within
the instrument itself (figure 4-6) and can be formatted in a variety of ways using a report-generator
associated with the instrument. For example if we are interested in the time dependent behavior of
inventory we may subject the data collected to an analysis by a time-series-analyzer. On the other hand if
we are only interested in the minimum inventory, we can subject the same data to analysis by a

descriptive-statistics-analyzer.

{{ KBS-Instrument
IS-A: instrument
PURPOSE:
INSTRUMENT-TYPE:
Range: (OR data-collection data-display)
INSTRUMENT-MODE:
Restriction: (OR demon event scheduled)
SLOT-TO-DEPOSIT:
-Comment: slot value to be monitored or the event slot when this will be
executed as one of the event actions
SCHEMA-TYPE:
Comment. the names of generic schemata to which this instrument applies
INSTRUMENT-SCHEDULE:
Comment. event schedule for scheduled instrument
Restriction: (TYPE is-a event-schedule)
DATA:
ACTIOM: ‘
Comment: the data collection or display function
ATTACHMENT-FUNCTION:
Comment. the attachment procedure }}

Figure 4-4: KBS-Instrument Schema

Once an instrument schema is defined, it is attached to an appropriate part of the model, which when
gxecuted, results in the collection of the specified data which can be subjected to analysis.
{{ xa50-inventory-instrument

INSTANCE: KBS-instrument
INSTRUMENT-TYPE: data-collection
INSTRUMENT-MODE: demon
SLOT-TO-DEPOSIT: on-hand
SCHEMA-TYPE:xa50-inventory
DATA: xa50-inventory-on-hand-data }}

Figure 4-5: Inventory Instrument Schema

KL o



PR 38 DB UK U TaW B D L et tad ol el a8 vaf Vab aB Tal Sal Sa8 $4% 0a9 eal Vel ¢ - ) RN K] X

.....

14

{{ xa50-inventory-on-hand-data
INSTANCE: set-data
SCHEMA-SET: set of xa50 inventory schemata derived from the instrument
SLOT: on-hand
ANALYSIS: descriptive-stats
DATA: to be filied by the instrument H

Figure 4-6: Inventory Data schema

The specification of the instrument and data schemata is o be derived manually. However, it may be
possible to automate this process in the future by using a natural language deductive reasoning system.

4.1.3. An Example of Scenario Rating

In this section we will illustrate the procedure for rating a scenario via an example from the CDS model.
Consider a composite organizational goal to increase customer satisfaction while keeping the distribution
overheads low. This goal may be broken-down into two subgoals:

» Customer stockouts should not exceed 5% of orders.
» Distribution cost per unit sold should not exceed 10% of the cost of manufacturing.

{{ Inet-pc-goait
INSTANCE: KBS-goal

CONTRIBUTING-CONSTRAINTS: satisfy-customer economize-distribution
EVALUATION-SCHEDULE: daily-at-midnight }}

Figure 4-.7: An example of CDS's goal

The corporate goal specified by the schema: Inet-pc-goalt is a composite of two organizational goal
constraints: satisfy-customer and economize-distribution. These are shown in figures 4-8 and 4-9
respectively. Each goal constraint is assigned an importance rating based on the role it plays in the
overall corporate plan. Each goal constraint schema points {0 a constraint specification schema which
specifies a utility function and the needed data collection instruments. Figures 4-10 and 4-11 show. the
constraint specitications for the satisfy-customer and economize-distribution constraints.

{{ satisfy-customer
INSTANCE: goal-constraint
CONSTRAINED-BY: satisfy-customer-spec
IMPORTANCE: 0.70 }}

Figure 4-8: Raetailer Satistaction Goal Constraint

{{ economize-distribution
INSTANCE: goal-constraint
IMPORTANCE: 0.30
CONTEXT: economize-distribution-precon
CONSTRAINED-BY: economize-distribution-spec }}

Figure 4-9: Distribution Cost Reduction Goal Constraint
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{{ satisfy-customer-spec
INSTANCE: goal-constraint-spec
APPLY: eval-customer-satisfaction
UTILITY: stockouts-utility-graph

INSTRUMENTS: measure-stockouts measure-total-orders }}
Figure 4-10: Specs for Customer Satisfaction Constraint

{{ economize-distribution-spec
INSTANCE: goal-constraint-spec
APPLY: eval-distribution-costs
UTILITY: distribution-utility-graph

INSTRUMENTS: measure-manf-cost measure-distribution-costs }}
Figure 4-11: Specs for Distribution Goal Constraint

{{ measure-stockouts
INSTANCE: KBS-instrument
INSTRUMENT-TYPE: data-collection
INSTRUMENT-MODE: event .
ACTION: extract-stockout-info
SLOT-TO-DEPOSIT: back-orders
SCHEMA-TYPE: 1

Figure 4-12: Instrument to measure Stockouts

{{ measure-total-orders
INSTANCE: KBS-instrument
INSTRUMENT-TYPE: data-collection
INSTRUMENT-MODE: event
ACTION: sum-up-total-orders }}

Figure 4-13: Instrument to measure Total Orders

In order to evaluate the goal constraint: satisfy-customer we need to measure the total orders filled as
well as the number of stockouts. This is accomplished by depositing the
measure-stockouts and measure-total-orders shown in figures 4-12 and 4-13 respectively.

instruments:

The data needed to evaluate the economize-distribution goal constraint is collected by depositing the
instruments: measure-distribution-cost and measure-manf-cost shown in figures 4-14 and 4-15

respectively.

{{ measure-distribution-costs
INSTANCE: KBS-instrument
INSTRUMENT-TYPE: data-collection
INSTRUMENT-MODE: event
ACTION: compute-distribution-costs }}

Figure 4-14: Instrument to measure Distribution Costs
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{{ measure-manf-costs
INSTANCE: KBS-instrument
INSTRUMENT-TYPE: data-collection
INSTRUMENT-MODE: event
ACTION: compute-manf-costs }}

Figure 4-15: Instrument to measure Manufacturing Costs

The instrument action functions will be tailored to extract the desired information and update the "data”
in the instrument. Note that instrument data may also be directly available in the schema it is attached to.

Having defined the goal, its constraints and the instruments, it is then connected to the model. When a
goal is connected the relevant instruments are automatically aftached to the model. The actual
evaluation of the goal is an event scheduled to occur at some future date according to the
EVALUATION-SCHEDULE, at which time the EVAL-FN is executed. However, it may aiso be evaluated
manually at any time as desired.

A goal evaluation function (e.g. eval-KBS-goal) will normally retrieve the ONTRIBUTING-CONSTRAINTS of
the organizational goal. For each constraint if the context of the constraint applies then the constraint is
evaluated by the function in the APPLY siot to compute a rating. This rating weighted by the importance
of the constraint contributes to the overall “rating” of the organizational goal. If the goal is evaluated mcre
than once it should be possible to observe the direction and decide how good or how bad the
organization is doing.

4.2, Experiment Specification

Execution of the model consists of simulation runs. Each run of a model is an experiment. KBS defines
schemata which contain all the information needed to conduct a series of experiments on models. At the
end of each experiment, KBS may optionally “fire" a rule base which may suggest changes that need to
be made to the model in the next experiment.

In Figure 4-16 KBS-run-spec specifies the profile for a simple run. RUN-DISPLAY governs what is going
to be shown on screen during model execution. if the user is interested in the execution trace of model
EVENT-TRACE i8 activated, and in addition, if system statistics such as events per second of CPU time are
needed SYSTEM-STAT is turned on. START-TIME and STOP-TIME refer to the simulation clock. Note, if there
are no events in the calendar or if a terminating condition is met, the experiment may stop before the
clock reaches STOP-TIME.
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{{ KBS-run-spec

RUN-DISPLAY:  kbs-run-display

comment:. the display which is active during the run
EVENT-TRACE: t

comment. it event trace is posted to the display
SYSTEM-STATS: t

comment. it system stats are needed
SYSTEM-STAT-FREQUENCY: 20

comment: tells how often system statistics are updated
START-TIME: "12 Sept 1985

comment:. start time for each experiment
STOP-TIME: "25 Sept 1985"

comment:. stop time for each experiment }}

Figure 4-16: The Run specification

Figure 4-17 shows the execution profile needed to conduct a series of experiments. It specifies options
for model introspection (LEARNING-REQUESTED), goal-directed scenario rating (RATING-REQUESTED),
automatic diagnosis and cormrection of model parameters through rule-based analysis (RULES-REQUESTED,
RULE-SET, ITERATION-UMIT) and management of related experiments (INITIALZATION, EXPERIMENTS-TO-BE-
DONE, COMPLETED-EXPERIMENTS, BASE-CONTEXT).

{{ KBS-expert-run-spec
INITIALIZATION: initialize-run
LEARNING-REQUESTED: nO
comment. it introspection is requested
range: (or yes no)
RATING-REQUESTED: N0
comment. it scenario rating is to be done, implies goals need to be connected
range: (or yes no)
LEARNED-DATABASE: il
comment: Name of file to save learmned information
RULES-REQUESTED: yes
comment: it automatic diagnosis is required
range: (or yes no)
EXPERIMENTS-TO-BE-DONE: 4
restriction: (TYPE instance KBS-experiment)
COMPLETED-EXPERIMENTS: e1 2
RULE-SET: bottleneck-diagnosis
commsnt: Specifies Rule set to use in diagnhosis
ITERATION-LIMIT: 8
comment: Number of experiments before the expert system gives up
CURRENT-ITERATION: 3
comment: the current run number
BASE-CONTEXT: kbs-start-context
comment: context where the base model resides,
expearimental contexts are children of it }}

Figure 4-17: Expert System Run spec

The KBS-experiment schema in Figure 4-18 describes individual experiments. The slot
MODEL-CHANGES is filled with a set of "change specs”, which describe the changes that need to be
performed on the model before the start of each experiment. In addition there are slots (not shown)
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whose vatues reflect the status of that experiment.

{{e3
INSTANCE: KBS-experiment
EXPERIMENTAL-CONTEXT: kbs-experiment-context3
comment:. context for this experiment, child of base-context
MODEL-CHANGES: e4-change-spec
comment. provides a description of the model for this experiment. The base-model is
altered accordingly
ITERATION: 3
comment. the iteration this experiment corresponds to }}

Figure 4-18: Specification of an Experiment

KBS supports a feature rarely found in traditional simulation environments. it is the ability to conduct a
series of experiments without human intervention. The important point to note is that individual
experiments are not disjoint but are improvements on past experiments, where the improvements are
automatically achieved by rule-bases detailing the diagnosis/correction heuristics. In order to work
correctly the rules must allow for reasoning between several model scenarios. Management of alternate
scenarios in KBS is possible by creating a context tree where each context is devoted to a scenario.

43. Simulation Execution

In discrete event simulation the system changes state at discrete points in time. Running the model
simply consists of executing the next imminent event from the calendar of events until there are no more
events to execute or some halting criteria are satisfied. Each event notice in the calendar specifies the

the name of the event, its focus, the time and any parameters that should be available at the execution -

Flme. In the example event notice, (see figure 4-19 )

{{ event24
INSTANCE: event-notice
FOCUS : pittsburgh-reseller
comment. Focus of event, the entity
EVENT : order-arrival
comment. evert-siot in event-schema
TIME :"21 April 1985 11:00:00"
comment. Time of execution
PRE-ACTION: nil
comment. Action to take before event execution
POST-ACTION: nil
comment: Action to take after event execution
EVENT-PARAMETER: order10
comment. Event parameters
RUN-EVENT: run-event
comment. method to execute event }}

Figure 4-19: An exampie Event Notice

an event “order-arrival” is to occur on "21 April 1985” at 11:00:00 AM simulated time and is focused
around pittsburgh-reseller. The execution of this event is accomplished by the following steps:

« the simulation clock is advanced to "21 April 1985 11:00:00"

« the value of the slot ORDER-ARRIVAL of the schema pittsburgh-reseller is extracted
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¢ each item found in the list of values is interpreted

The items found in the list of values in the event slot may be representing a LISP function, a rule or an
instrument which are designed to collect data, display some text or produce graphic side-effects.
Simulation proceeds by successively executing event notices until a prespecified terminating condition is
met.

4.3.1. Checkpoints and Interrupts

Checkpoints are used in KBS to save the state of a model during the experiment along with run-time
" system information such as the simulation clock, the calendar and other global variable bindings.
Checkpoints are also implemented through the use of contexts. Before the experiment is initialized a new
context kbs-run-context-n which is a child of the experiment context is created to protect that experiment
from getting "corrupted” by subsequent modifications. After the "prime event"” (i.e. the event that sets the
simulation in motion) another context kbs-run-context-n+1 a child of kbs-run-context-n is spawned. In
addition, the user may interrupt the simulation any number of times to checkpoint the model. This facility
allows the user to backtrack to some previous point in execution to compare the differences between
progressive scenarios. We refer to checkpoints as snapshots of models within the same experiment.
Checkpoints are useful when comparing different scenarios in a single experiment.

4.32. Tracing

A simulation analyst often foliows hunches when debugging simulation models. This style of debugging
is different from stepping instruction by instruction, which can be frustrating if, for instance, the analyst is
only interested in events focused around pittsburgh-reseller. In tracing with graphics, the user fills in a
trace-spec and the system traces only under conditions declared in the schema. For example, it is
possible to selectively observe pittsburgh-reseller: order-arrival when scheduling, in which case all other
events are deemed uninteresting and will not feature in the trace. It is also possible by default to trace

everything.

In Figure 4-20 we show a photograph displaying the event to event interaction in the CDS model. The
rectangle in the center shows the focus of the current event, “westfieid-manufacturing” scheduling two
other events focused around “lebc” and “transportation”. In practice, we found this to be a powerful
feature because it makes the modeler understand the internal workings of the model thus improving one’s
confidence in the results of the model.
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s Figure 4-20: Tracing with Graphics in actual runs

4.3.3. Stepping

In tracing we saw how events are dispfayed while they execute. However, due to the limitations of the
screen or due to the unavailability of a graphics device, it is useful to have a stepping capability. As
events are executed they change values of attributes and such state changes are observed step by step
in a window dedicated to stepping. A step command is all that is needed to switch on this kind of trace.
" Stepping is similar to tracing everything, but, without the use of graphics. Attribute value bindings are also
shown here because information is displayed textually. To summarize the difference between tracing and
stepping, it is :zasier to detect event attribute chains in tracing, but it is not possible to observe individual

K event parameters which is better done by stepping.

o 4.3.4. Event Tracking

¥ The automatic analysis of simulation data (section 5) requires the recording ot event sequences and
2 their interaction with entities and their attributes.

For example, figure 4-21 is an example of an event track which includes events E, and attributes X.. I
we declare that X, causes E, because E, depends-on X, then the system can automatically deduce that
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Figure 4-21: Event Tracks '

X, indirectly atfects X, thus tracing a causal path from X, to X 5. -

-

Event tracks are stored as meta information attached to slots which define event behaviors and h

attributes which are accessed or affected by events. ')
)

4.3.5. Simulation Animation "

Graphic animation is sometimes the most effective way to-represent the dynamics of a simuiation. In

very large models the screen may not be large enough to display all the information at once to all ;
audiences. In such cases several views of the model may be presented just as is done in perusal. Here, /
in addition to intelligent use of changing icons and colors, special effects such as flashing and life-like ,

movement may be shown. G
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$There is an important limitation in the automatic detection of cause-effect chains when the attributes are includad. The system e

can only detect how an event affects an attribute and not vice-versa. For example, the system is capable of detecting the fact that
the inventory” ls reduced, when the event "sell-goods" is executed. But another fact that the reduction in “inventory” has the effect 3
of causing the event order-for-goods® goes unnoticed. However since the value of “inventory® is accessed during the event
“order-for-goods” therefore, for automatic tracing we may make the assumption that accesses implies depends-on.
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Figure 4-22: Animation of the inet-pc model

Figure 4-22 shows the use of changing colors of icons and animating can be used to effectively
communicate the performance of a model scenario.

4.3.6. Report generation

In KBS, performance data is collected by "instrumenting” the model. The data thus collected is stored
in the instrument itself or in some other schema. This data has to be summarized and presented before it
can be of any use. These summary reports themselves can be generated by using "Report Instruments”
that are attached to event slots. As the events are executed, appropriate reports also appear as those
instruments are executed. This can take the form of a "textual report" or "graphic side effect” which
updates the display sceeen.
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Figure 4-24: Reports using windowed Displays

Figure 4-23 is a typical bar chart produced by KBS. Figuré 4-24 shows how a summary report can be
displayed using multiple windows.

4.4. Experiment Rating
The inet-pc-goal1 discussed in the example on rating scenarios was actually implemented on a model
of a distribution network. After a few days of simulated time the goal was evaluated and reported.
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£BS ANALTISIS
GOAL EVALUATION REPCRT

Figure 4-25: Example of Goal Evaluation

Figure 4-25 shows a goal evaluation report produced by KBS for the CDS modet.

This result indicates that customer satisfaction was bad because it was rated negatively (-0.9) but the
distribution costs were economical and were rated at 0.8 which is good. However the overall goal rating is
still unsatisfactory because of its negative rating.

Overall goal rating
= wt. avg. of individual constraint ratings
= (0.3 * 0.8 +0.7* -0.9)/(0.3 +0.7) =~ 0.39

it has been shown in detail how goals, constraints and instruments work in harmony to rate model
scenarios. This means we can collect data from a model run, detine and connect goals to the model and
be able to tell how good the model is behaving with respect to the organizational goals. The instruments,
goals and constraints are constructed manually but data-collection and reporting are done automatically.

When goals are more complex, they may be viewed graphically with the help of a Kiviat chart like the
one shown in Figure 4-26. ’
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Figure 4-26: Complex Goals viewed Graphically

In Kiviat graphs all performance parameters that are "good” when they assume large values are plotted
above the X axis while the performance parameters which are "bad” when they are large are plotted
below the X axis. The shape derived by connecting these parameters can quickly present a view that
shows whether the current scenario is good or bad (bad scenarios have large areas below the X axis).

5. Automatic Analysis of Data

A major goal of our research in KBS has been to use knowledge to automate the analysis of data
generated by simulation experiments and to suggest ways in which the modei can be altered to further
optimize the goals and constraints. One method is to use an expernt systems approach where a set of
experts are interviewed in order to identify and codify their expertise. We believe this is an important first
step; any knowledge not widely available to the simulation community at large, which can be made
available as part of the simulation system, can have an important impact. An example of this approach
can be found in Simulation Craft [Fox et al. 86] where expertise is used to identify and correct bottleneck
situations. In figure 5-1, the report window (upper left) defines the goals to be satisfied by the experiment
(e.g., cost, machine breakdown, resource utilization), the exception window (lower right) identifies the
constraint deviations (e.g., poor utilization of machines), and the suggestions window (lower left)
recommends a change to the model to maximize the goals (add more machines).
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Figure §-1: Simulation Craft Analysis and Treatment

In KBS, we have extended this approach. Recognizing that many of the systems which the user
wishes to model are quite complex and possibly unique, the amount of available expertise may be limited.
Though general rules which describe the causal relations among variables may exist, they may be too
general to capture the details of the particular system being modeled. Our approach takes rule based
expertise as a starting point. By analyzing data gathered by event tracking using a procedure known as
path analysis, we are able to learn refinements for the rule set.

5.1. Learning Rules Using Path Analysis

Path analysis was originally introduced by Sewall Wright [Wright 21] [Wright 34] [SPSS 78], as a
method of analysis by which the qualitative knowledge that we have regarding causal relations may be
combined with the quantitative knowledge of the degree of relationship furnished by correlation and
regression. In other words it is a method of measuring the direct influence along each separate causal
path in a causal network of variables in a system, and thus of finding the degree to which variation of a
given effect is determined by each particular cause. It must be emphasized that the method of path
coefficients is not intended to accomplish the impossible task of deducing causal relations from the values
of the correlation coefficients. However, in cases in which the causal relations are uncertain the method
can be used to find the logical consequences of any particular hypothesis.
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In KBS, path analysis is used to refine the heuristic knowledge provided by an expert. In particular, it is
used to elaborate the simple causal relations normally found in rules to include interactions among
variables found "buried" in the model, and to refine the degree to which variables are causally related. In
other words, KBS performs a type of learning where heurstic knowledge is refined based upon the
outcome of simulation experiments. The following outlines the tasks in the learning process.

s A Rule is proposed by the domain expernt.

+ The causal assumptions on which the rule is based are validated against the running model.
Validation implies detection of causal chains in KBS models. The rule may need to be
modified if the initial causal assumptions were either erroneous or insufficient.

e Altemate causal structures are then proposed and automatically analysed. The most
appropriate causal structure is chosen, and the results summarized to yield an equation that
reflacts the sensitivity of the Output parameter with respect to the controllable input
parameters. Thus path analysis is used to find the degree to which variation of a given effect
is determined by each particular cause in the system being modeled.

» The sensitivity information is used to quantitatively refine the rules.

5.2. A Detalled Example

in the CDS domain several areas for analysis were isolated, namely Inventory Policy, Capacity
Planning, Topology Planning, and Operational Planning. Of these Inventory Planning, has been singled
out for Path Analysis mainly because the topic is familiar and numbers are easier to relate to. A typical
example will best illustrate the series of steps that are taken to arrive at a refined rule starting from a more
general rule proposed by the domain expent.

Example of a Diagnosis/Corraction Rule:

IF The Goal is to minimize stockouts and
Average-Inventory is Low and Stockouts are High
and Production Rates can be monitored

THEN

Increase the Production rate

To be specific the Rule must refer to actual instances of objects in the model and we proceed with the
inet-pc model of the CDS domain shown in Figure 2-1.

By concentrating on Manufacturer M, and Distribution center D, the Rule becomes a bit more specific
expressed as: -

IF The Goal is to minimize D7:stockouls and
D1:Avg-inventory is Low and D1:Slockouts are High
and M1.production-raté can be altered

THEN
Increase M1 production-rate

Orawing upon the CDS model D1:stockouts (% of orders not filled) is an Output parameter and
M1.production-rate is an Input parameter. A few causal structures, as shown in Figure 5-2, are then
propcsed which attempt to include the variables in the rule causally connected to each other along
different paths.
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' Unknown
Unknown sl MI:production-rate ‘ e
\ \ 24 v
M 1 :production-rate 1 4 : :
p — D1:stockout /v D1:stockout
. -{.73
Dl:avg-inventory
(a) ’ (o)

Unknown , 1,

I

Dl:avg-inventory

v

0.95
M 1 :production-rate °.84

P -4 Dl:stockout
(c)
Unknown 0.2 Unknown
\' 2.28
0.95 .

-0.92

M1:production-rate » Dl:avg-inventory » Dl:stockout

{d)

Figure 5-2: Causal Hypotheses in inet-pc mode!

We first verify with the help of event tracking whether D1:Avg-inventory, D1:stockouts and
M1.production-rate are indeed causally connected to each other. For example in Figure 5-2 (b) we must
verify whether M1 production-rate is connected via an events chain to D1:stockouts and
D1:avg-inventory, and similarly it D1:avg-inventory is connected to D1:stockouts. The causal chain
connecting M1.production-rate to D1:stockouts is shown in Figure 5-3.

M1:manufacturing Ml:send-shipment Dl:rsceive-shipment Dl:recelve-order,

event ) even: p event N event
v A S
':' \\ o \
~ N ~ »
4 ‘ ’ -
M} :production-rate . Dl:inventory Di:stockouts
attribute attribute attribute

Figure 5-3: Causal Chain derived from Event Tracking
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As can be seen from Figure 5-4 the causal assumptions for all Figures 5-2 (a) (b) (¢) and (d), are valid.

.HS INIERFACE PROCESS

Tue Jun

Figure 5-4: Validating hypotheses

Figure 5-2 (a) is purposely included to show the naive approach which would be taken in the absence
of Path Analysis, by ignoring the intermediate variable D7:avg-inventory. It must be stressed here that
the search algorithm used to discover causal paths can find all paths existing between two model
variables given time and resources but currently it returns with the first path found. Thus the causal chain
in Figure 5-3 is not the only possible path between M1.production-rate and D1.stockouts and it would be
wrong to place great faith in that path and recommend that the correct causal structure from the several
alternatives in Figure 5-2 is (d).%

A series of experiments are then designed to measure Di:avg-inventory and Df1.stockouts while
changing M1 production-rate and results of these experiments are shown in Table 5-5.

‘s
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%1t is a coincidence that in this example it turns out that it is the most appropriate hypothesis.
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N
)
v
Experiment M1:Production Rate  D1:Stockouts D1:Avg-inventory :
1 30 48.592 11.41 )
2 50 48.449 14.24 o
3 60 48.470 13.66 o
4 70 48.290 14.47 N
5 80 48.205 17.30 S
6 100 48.122 15.90 4
7 120 48.248 17.99
8 140 48.152 19.54 =
9 160 44.256 25.09 -
10 180 © 41.264 28.68 W
Figure 5-5: Results of Experiments on inei-pc model ;
Using the above résults. all atternate causal structures (hypotheses) Figure 5-2 (a) through (d) are ‘At
subjected to Path Analysis and the coefficients in the Path Diagrams are computed. Example schemata lfq
from the causal structure representing hypothesis h1 are shown in Figures 5-6, 5-7, 5-8 and 5-9. X
1
¢
{m v
INSTANCE: causal-network 3
MODEL-NAME: inet-pc ~
comment: model for which causal analysis is being conducted o
NODES: stockouts1 inventory1 production-rate? gt
comment: a set of model variables to be studied ' -
PATHS: inventory1-stockouts1 production-rate1-to-stockouts1 production-rate1-to-inventoryt l,
comment: a set of computed causal paths in the network )
ANALYZE-PATHS: do-path-analysis A
comment: a method for conducting path analysis  }} W)
Figure 5-6: An Example Causal Hypothesis :'»‘
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{{ stockouts1
INSTANCE: causal-node
NODE-OF: h1
' comment: The causal network this node belongs to
CAUSES: nil

comment: The nodes caused by this node
CAUSED-BY: inventory1 production-rate1
comment: The nodes which cause this node
DATA: stockout
comment: The data schema which contains observations and information for mapping
data in the model to data suitable for causal analysis
PATH-EQN: 39.629 - 0.837 production-rate1
comment: A symbolic equation relating this node to all the /nput nodes on which it directly
or indirectly depends on. An Input node is a model variable which can be altered
REGR-EQN: 48.62 - 0.45 inventory1 + 0.0167 production-rate 1
comment: A symbolic equation relating this node to immediately preceding nodes on
which it directly depends on.
RESIDUE: 0.116
comment: the unknown component expressed as a standardized path coefficient }}

Figure 5-7: An Example Causal node

{{ Inventory1-to-stockouts1
INSTANCE: causal-path
FROM-NODE: inventory1
comment: the causing node in the path
TO-NODE: stockouts1
comment: the effect node in the path
PATH-COEFFICIENT: -1.152
comment: the standardized path co-efficient )]

Figure 5-8: An Example Causal Path

{{ stockout
INSTANCE: model-variable
OBSERVATIONS: 36.37 31.95 22.87 25.44
comment: a list of values of the transiated model variable, one for each experiment
ACTUAL-VARIABLES: (D1 total-orders) (D1 back-orders)
TRANSLATE-RESULTS: extract-stockouts
comment: a message to fill up the observations slot from the results of experiments
MODEL-NAME: inet-pc
comment: name of model from where data is to be extracted }}

Figure 5-9: The Model variable schema
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»
Figure 5-10 shows the regression equations derived from various hypotheses (the schemata for h1 are "“
shown in figures 5-6 through 5-9). The residual (unknown) influence on D1:stockouts 0.62 in (a) is higher =
than that in (b), (c), and (d) which is 0.28, thus suggesting that hypothesis (a) should be dropped from )
further consideration. From among (b), (c) and (d) we reject (bj and (c) because the path coefficient from :a
M1.production-rate to D1.:stockout is positive leading us to incorrectly believe that increasing production o
rate results in an increase in stockouts. Thus the most appropriate hypothesis is Figure 5-2 (d) and from !*
the unstandardized path equations we derive the sensitivity information necessary to improve the rule. ! |f
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The Regression equations:

D1 steckouts = -0.418 Dt:avg-inventory + 54.65
D1-avg-inventory = 0.102 M1.production-rate +  7.693

Summarized Path analysis:

D1:stockouts = - 0.0428 M1 .pproduction-rate + 51.44

Sensitivity :
8 (D1:stockouts) /38 (M1.production-rate) = - 0.0428
8 (M1.production-rate) /8 (D1:stockouts) = - 23.382
Without Path Analysis we would have assumed:
'~ Dt:stockouts = - 0.038 M1.production-rate + 51

Getting back to the rule, a possible refinement may be

IF The Goal is to keep D7:stockouts below 40 % AND
D1:Avg-Inventory < 30 AND
D1:Stockouts are in the range 40 % - 50 % AND
M1.production-rate can be altered

THEN

M1.production-rate = M1 production-rate + 23.38 (D1:stockouts ~ 40) -

As seen above in simple cases Causal Path Analysis reduces to ordinary Linear Regression. and by
plugging in the value of the Input (causing) variable into the regressed equation we can predict the
expected value of the Qutput (caused) variable. However in a more complicated case such as that of
Figure 5-2 (d) a Causal Correction is applied to the Regression coefficients before predictions can be
made. For a detailed treatment on the subject of Path Analysis refer to [Wright 21] [Wright 34] {Li
75] [SPSS 78).

6. Automating the Simulation Life Cycle

A impontant component of a'knowledge based simulation system is the reasoning architecture used to
manage the simulation life cycle. Both KBS and Simufation Craft (Fox et al. 86] use a goal directed
reasoning architecture where each stage of the simulation life cycle is defined as a separate goal with a
set of rules which:

o identify sub-tasks to be performed
e initialize each sub-task at the appropriate time
¢ identify when the sub-task is completed

¢ signal when the entire goal is completed
In figure 3-3, the bottom right window lists the current sequence of sub-tasks being managed by the
system. [n addition, unless required sub-tasks are completed in one stage, the user cannot move on to
the next. For example, in figure 3-3, the - . Jer right window defines a set of "pending activities" remaining
to be completed before the model is com;. ate enough to be simulated.
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Figure 6-1: Architecture of a KBS based Expert System

Figure defines the goal network in KBS. The following outlines the sequence of activities performed by
the user.

o The user interface process (UIP) receives a request from the user.

o If it is a simple request for information, the model database is accessed to retrieve the
appropriate information. .

o If it is a request for a prescription {i.e. a goal oriented request), the request is analyzed by a
Rule-based goal-analyzer.

» This analysis may result in invoking an appropriate Operations Research tool, or a
specification to conduct a series of experiments, or a specification to execute the simulation
model in the "learn” mode to detect causal relationships.

» When causal relationships are detected, they may enhance the "domain rule base” which is
used in analysis.

e After. an experiment is conducted the results are analyzed. I they are satisfactory with
respect to the goal. i.e. a high rating was achieved for that scenario, then a recommendation
is made based on the best scenario. If the results are not satistactory then the
analysis/correction rules are fired, which may generate change specs for the next experiment
to be conducted.

Several types of analyses can be performed by KBS, in order to satisfy a specified goal:

o Static Analysis. This is used when no time dependent information plays a role in the
analysis.

» Performance Analysis. This is used when one of the following is requested:
+ Rating of a given scenario.

+ Analysis. This is used to detect the causes of unsatisfactory behavior of the model.

» Scenario Generation. This is used when a number of scenarios have to be tried
before a prescription can be provided.
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*» Trade-otf. This is used when it is necessary to compare several given scenanocs. oA

* Learning. :f the objective of executing the simulation mode! is to detect embedded causal 3
relationships. the model is executed in the “learn” mode and subsequently processed by the
causal analysis module.

o Mathematical Analysis. !f the goal-analyzer determines that the current request can be A
satisfied by a mathematical analysis rather than simulation, an appropriate analysis tool will
be invoked. 0t

Figure 6-2 shows a log of the execution of a simulation model which was automatically analyzed
resulting in the construction of the improved scenario kbs-experiment-2. 3
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Figure 6-2: Recommendation from Automatic Analysis
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The run specifications that produced this analysis are shown being entered by the user in picture 6-3.
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Figure 6-3: Simulation Run Profile

7. Conclusions

Since 1980 KBS has been a testbed for experimenting with knowledge-based techniques for model
building, execution and analysis. As such, it has proved invaluable in identifying user needs and testing
approaches to solving them. In retrospect, the first step of using a schema representation and a
combined object and rule-based programming paradigm for representing simulation knowledge and
behavior was perhaps the simplest and most intuitive. It made model creation more easy because
models could be built using objects specific to the domain. It also made understanding the model easier.
But there is a limit to both the ease of creation and understanding. As models became more complex the
use of simple schema editors did not suffice for creation and perusal. Powerful graphics-based model
building facilities were not explored due to the lack of facilities. By combining good graphics and
knowledge-based techniques, such as model verification, interfaces may be constructed to support the
building ot more complex models.

Perhaps the most important aspect of KBS is its focus on automating the simulation life cycle. First,
KBS provides a goal directed architecture which manages the life cycle enabling the clean interleaving of
the reasoning performed by the user and the embedded expertise. Secondly, KBS provides an
automated analysis capability where not only rule based expertise can identify and recommend
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g
corrections for problems, but rule refinements can be learned by analyzing simulation data. The purpose :

3 of performing simulation is to produce data, which when analyzed will identify interesting aspects of the ;

o model. It is often the case that the data is voluminous and the analyst lacks requisite skills. By

embedding knowledge into KBS to automate the analysis, such expertise can be uniforaly and
consistently applied across many applications. )

The uitimate goals of applying knowledge-based systems to simulation should be to reduce the total
time in the simulation life cycle, and to increase the quality of the results by making available expertise not
readily available to the end user. KBS represents a good first step along this path.
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